(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(g(x), g(a)) →+ f(x, g(a))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / g(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(a, g(y)) → g(g(y))
f(g(x), a) → f(x, g(a))
f(g(x), g(y)) → h(g(y), x, g(y))
h(g(x), y, z) → f(y, h(x, y, z))
h(a, y, z) → z
Types:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
h :: a:g → a:g → a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
hThey will be analysed ascendingly in the following order:
f = h
(8) Obligation:
TRS:
Rules:
f(
a,
g(
y)) →
g(
g(
y))
f(
g(
x),
a) →
f(
x,
g(
a))
f(
g(
x),
g(
y)) →
h(
g(
y),
x,
g(
y))
h(
g(
x),
y,
z) →
f(
y,
h(
x,
y,
z))
h(
a,
y,
z) →
zTypes:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
h :: a:g → a:g → a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
The following defined symbols remain to be analysed:
h, f
They will be analysed ascendingly in the following order:
f = h
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
h(
gen_a:g2_0(
n4_0),
gen_a:g2_0(
0),
gen_a:g2_0(
1)) →
gen_a:g2_0(
+(
1,
n4_0)), rt ∈ Ω(1 + n4
0)
Induction Base:
h(gen_a:g2_0(0), gen_a:g2_0(0), gen_a:g2_0(1)) →RΩ(1)
gen_a:g2_0(1)
Induction Step:
h(gen_a:g2_0(+(n4_0, 1)), gen_a:g2_0(0), gen_a:g2_0(1)) →RΩ(1)
f(gen_a:g2_0(0), h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1))) →IH
f(gen_a:g2_0(0), gen_a:g2_0(+(1, c5_0))) →RΩ(1)
g(g(gen_a:g2_0(n4_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
a,
g(
y)) →
g(
g(
y))
f(
g(
x),
a) →
f(
x,
g(
a))
f(
g(
x),
g(
y)) →
h(
g(
y),
x,
g(
y))
h(
g(
x),
y,
z) →
f(
y,
h(
x,
y,
z))
h(
a,
y,
z) →
zTypes:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
h :: a:g → a:g → a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Lemmas:
h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) → gen_a:g2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = h
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
a,
g(
y)) →
g(
g(
y))
f(
g(
x),
a) →
f(
x,
g(
a))
f(
g(
x),
g(
y)) →
h(
g(
y),
x,
g(
y))
h(
g(
x),
y,
z) →
f(
y,
h(
x,
y,
z))
h(
a,
y,
z) →
zTypes:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
h :: a:g → a:g → a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Lemmas:
h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) → gen_a:g2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) → gen_a:g2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
a,
g(
y)) →
g(
g(
y))
f(
g(
x),
a) →
f(
x,
g(
a))
f(
g(
x),
g(
y)) →
h(
g(
y),
x,
g(
y))
h(
g(
x),
y,
z) →
f(
y,
h(
x,
y,
z))
h(
a,
y,
z) →
zTypes:
f :: a:g → a:g → a:g
a :: a:g
g :: a:g → a:g
h :: a:g → a:g → a:g → a:g
hole_a:g1_0 :: a:g
gen_a:g2_0 :: Nat → a:g
Lemmas:
h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) → gen_a:g2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:g2_0(0) ⇔ a
gen_a:g2_0(+(x, 1)) ⇔ g(gen_a:g2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) → gen_a:g2_0(+(1, n4_0)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)